
UCRL-JRNL-217473

Rotational Electrophoresis of
Striped Metallic Microrods

Klint A. Rose, John A. Meier, George M.
Dougherty, Juan G. Santiago

December 1, 2005

Physical Review E



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



In press, Physics Review E, 2006 1

UCRL-JRNL-217473

Rotational Electrophoresis of Striped Metallic Microrods
Klint A. Rose,1,2 John A. Meier,1 George M. Dougherty,2 and Juan G. Santiago1

1Department of Mechanical Engineering, 
Stanford University, Stanford, California 94305, USA

2Center for Micro and Nanotechnology, 
Lawrence Livermore National Laboratory, Livermore, California 94550, USA

Analytical models are developed for the translation and rotation of metallic rods 
in a uniform electric field.  The limits of thin and thick electric double layers are 
considered.  These models include the effect of stripes of different metals along the 
length of the particle.  Modeling results are compared to experimental measurements for 
metallic rods.  Experiments demonstrate the increased alignment of particles with 
increasing field strength and the increase in degree of alignment of thin versus thick 
electric double layers.  The metal rods polarize in the applied field and align parallel to its 
direction due to torques on the polarized charge.   The torque due to polarization has a 
second order dependence on the electric field strength.  The particles are also shown to 
have an additional alignment torque component due to non-uniform densities along their 
length.  The orientation distributions of dilute suspensions of particles are also shown to 
agree well with results predicted by a rotational convective-diffusion equation.  

I. INTRODUCTION

Rod-shaped metal particles with 200 nm to 4 µm diameters and lengths of 2 to 
40 µm can be grown as homogenous wires or with stripes of varying materials [1, 2].  In 
the latter case, material stripes along the particle provide a barcode that can encode on the 
order of 10 bits of information.  In biological detection applications, the barcode is used 
to identify a hybridization or immunoassay reaction that can be performed and detected 
in parallel with reactions corresponding to many other particle types in a common 
chamber or microfluidic channel [2, 3].  Homogenous nano- or microwires have been 
proposed as methods to construct electronic circuits, nanosensors, and biological-
electronic interfaces [4-7].  Assembly and orientation of metal nanowires has been 
demonstrated using dielectrophoresis with patterned electrodes and magnetophoresis with 
external magnets [8-11].  Such particles can also be manipulated with uniform electric 
fields through electrophoretic translation and rotation [12, 13].  

The electrophoretic motion of a particle is determined by an electrostatic force 
exerted on surface charge, hydrodynamic drag forces, a retarding force due to the flow of 
countercharges, and an electric relaxation force from the separation of positive and 
negative charges as the countercharges move over the particle surface [14].  Although 
generally these forces cannot be superimposed, their net effect on a particle moving at 
constant velocity (rotational or translational) must be zero.  There has been extensive 
work on the modeling of electrophoresis of both spherical and non-spherical particles.  
Here we present a summary of the extensive work on modeling electrophoretic particles. 
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Although these models primarily focus on non-conducting particles, we highlight aspects 
that are specifically relevant to ideally polarizable (i.e., non-reacting) metal particles.

The most common model for single-particle electrophoresis, developed by 
Smoluchowski, is derived using at least five basic assumptions [15, 16]:  (i)  
(λD / a)exp(zeζ / 2kT) << 1, where kT/e is the thermal voltage (approximately 25 mV), ζ
is the zeta potential, λD is the Debye length, and a is the characteristic particle length 
scale; (ii) zeta potential is uniform over the surface of the particle; (iii) applied field, E∞, 
does not disturb the charge distribution in the electric double layer (EDL); (iv) the 
particle is rigid and dielectric (such that εp << εm where εp is the particle permittivity and 
εm is the permittivity of the liquid); and (v) the surrounding liquid is unbounded.  Under 
these conditions, 

m ou Eε ζ
η ∞= and 0ω = , 1

where u is the translational velocity of the particle, ω is the rotational velocity of the 
particle, ζo is the uniform native (i.e., due to spontaneous chemical surface reactions with 
the electrolyte) zeta potential at the EDL shear plane, η is the liquid viscosity, and E∞ is 
the applied field [17].  Assuming (i)-(v), Morrison [18] and Teubner [19] showed that 
Eq. 1 is appropriate for dielectric particles of any shape (i.e. spheres, cylinders, ellipsoids, 
etc).   

If the EDL around a dielectric particle is thick, such that λD >> a, the simplest 
model of the motion is a balance of the Coulombic force on the particle with the 
hydrodynamic drag.  For example, a spherical particle with surface potential, ζ, would 
have a net charge of Q=4πaεmζ.  The Coulombic force on the particle, QE∞, is balanced 
by the Stokes’ drag force, 6πηau, to yield the Hückel equation, 

2
3

ou Eεζ
η ∞= 2

for the electrophoretic velocity [20].  When λD >> a the translational velocity of a 
cylinder (e.g., modeled as a prolate spheroid) is a maximum when the particle is aligned 
parallel to the field and a minimum when the particle is perpendicular to the field.  The 
translational velocity at any orientation is therefore u⊥ ≤ u ≤ u||, where the subscripts ⊥
and || denote a particle with the major axis oriented perpendicular and parallel to the 
applied field, respectively.  Assuming (ii)-(v), the electrophoretic velocity of a small 
aspect ratio (diameter/length << 1), prolate spheroid with thick EDL is 

2
o oE u Eεζ εζ

η η∞ ∞≤ ≤ (where the bounds are the values of u⊥ and u||) as shown by Harris 

[21].  
The λD >> a analysis is useful but only a limiting behavior.  For spherical 

particles, Henry [22] solved for an additional term, f(κa), that multiplies the right hand 
side of Eq. 2, varies from 2/3 to 1, and accounts for the retardation force caused by the 
motion of EDL counter ions.  This term links the limiting cases described by Eq. 1 and 
Eq. 2.  Ohshima [23] developed an expression for f(κa) for cylindrical particles and Yoon 
[24] for spheroidal particles (he uses the variable CPR for his multiplicative term) for the 
cases of the field parallel and perpendicular to the particle.  Stigter developed similar 
results for f(κa) (he uses yo) for highly charged cylindrical particles [25, 26].
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The limit of (λD / a)exp(zeζ / 2kT) << 1 in the assumptions for Eq. 1 implies that 
so-called surface conduction through the particle’s electric double layer can be neglected.  
As the charge density in the double layer increases with respect to the conductivity of the 
bulk solution, external field lines in the vicinity of the particle bend into the double layer 
as though its surface were an ion conducting surface.  For particles with high surface 
charge, ζ >> kT/ze, but thin EDL (λD << a), this high EDL charge density leads to a 
surface conduction tangential to the charged particle surface.  The dimensionless Dukhin 
number, (referred to as ‘Rel’ in the Russian literature),

sDu
a

σ
σ

= 3

compares the surface conduction of the EDL, σs, to the conductivity of the bulk solution, 
σ, and the characteristic particle scale, a (radius for spherical particles).  For Du << 1, the 
field lines of applied field are unaffected by the charge in the double layer.  For finite Du, 
the flow of ions through the diffuse ion layers around the particle can create charge 
buildup in the outer limits of the double layer at one end of the particle and depletion at 
the other end.  This change in ion density creates concentration gradients that lead to 
diffusio-phoresis and a modification of the EDL which affects net electrophoretic motion 
[27]. O’Brien and Ward [28] derived an analytical expression for the electrophoretic 
translation of spheroidal particles as the zeta potential increases.  Ho et al. [29] used this 
model to determine the zeta potential of ellipsoidal polystyrene particles with aspect 
ratios (diameter/length), between 1.0 and 4.5.  Their observations deviated less than 10% 
from values obtained using Eq. 1.

The depletion of ions from some EDL regions and accumulation in others can 
cause significant distortion and polarization of the EDL.  Charge polarization is 
characterized by an induced dipole moment (idm).  The degree of polarization and the 
idm depend on applied field, particle shape, size, and orientation, and Du.  For 
nonspherical particles, the external field acts on the induced dipole moment to induce a 
torque and rotational velocity.  The induced dipole moment of dielectric rod-like particles 
and the resulting particle rotation has been investigated in the Russian literature [30-34]
and in models of rod-like molecules [35, 36].  Dukhin and Shilov [37] reviewed much of 
the work on induced dipole models for spherical, ellipsoidal, and rod-like particles, and 
Mandel [38] reviewed induced dipole models as they apply to rod-like polyions.

In this study, we focus on (conducting) metal rod-like particles.  In most cases 
these metal cylinders can be modeled as ideally polarizable as they are small enough such 
that the potential imposed by the external field along the particles is insufficient to induce 
electrochemical reactions.  The work of Simonov and Dukhin [39] shows the 
translational velocity in Eq. 1 is correct for an ideally polarizable particle of any shape 
provided that (λD / a)exp(ze(ζo+E∞a)/2kT) << 1, where the additional term E∞a is the 
induced potential and a is the characteristic length along the direction of the electric field.  
Under these conditions, surface conduction through the EDL is minimal (Du << 1) and 
diffusio-phoresis due to concentration polarization of the particle’s EDL can be 
neglected.    The particle and surrounding double layer both polarize however.  Initially, 
electrons within the metal particle very quickly redistribute themselves through the metal 
to maintain a uniform electric potential at the particle surface, and field lines intersect the 
particle surface at right angles  (FIG. 1a).  For time scales shorter than εma/σsλD, 
electrolyte ions then accumulate at the (non-reacting) particle boundaries and act to shield 
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the particle from electric flux.  For time scales larger than order εma/σsλD, electrolyte ions 
completely shield electric flux from the particle and a final state is achieved where field 
lines are everywhere tangential to the surface (FIG. 1b).  In this final state, the particle 
boundary acts the same as that of a perfect insulator.  The time scale of the transition is 
limited by the electromigration of positive and negative ions from the solution to opposite 
sides of the particle surface, creating a screening cloud that expels field lines [40].  The 
charging time, εma/σsλD, applies when the zeta potential does not exceed the thermal 
voltage (ζo+E∞a < kT /ze).  As the zeta potential increases beyond the thermal voltage, the 
relation between double layer capacitance and charge density becomes nonlinear and the 
charging time becomes a function of the zeta potential (see reference [40] for a detailed 
discussion of charging time for systems with high zeta potential).  

FIG. 1. Electric fields lines around an ideally polarizable rod-like particle in an 
electrolyte at two different times after an external field is applied.   (a) Initial state nearly 
instantaneously after the field is applied. The relaxation time for the redistribution of 
electrons in the metal particle, τR=εp/σs, is on the order of 10-18 s.  After this time the 
field lines intersect the conducting particle at right angles although no electrochemical 
reactions occur at the surface.  (b) Final state after the electromigration of ions to the 
particle surface charges the double layer.  This charging of the double layer occurs on a 
time scale of order 10-6 s.

After the double layer polarizes, part of the ions within the screening cloud 
around the particle remain mobile and continue to migrate towards the electrode of 
opposite charge.  These “induced” counter-charges drag fluid with them as they move 
through the double layer.  Simonov and Dukhin [39] and Fixman and Jagannathan [41]
included this effect in their analysis of the polarized charge cloud around conducting 
spheres and non-conducting infinite cylinders respectively.  Fixman and Jagannathan [41]
calculated the resulting electrophoretic velocity and dipole moment for DNA molecules.  
Bazant and Squires [42] and Squires and Bazant [40] described in detail the liquid flow 
field generated around the particle due to the motion of the induced counter-charges 
through the double layer.  They termed this effect induced-charge electroosmosis (ICEO).  
For particles with broken symmetries, e.g. non-uniform surface properties, the flow due 
to the electromigration of positive ions may exceed that of negative ions (or vice versa) 
causing the particles to translate due to induced-charge electrophoresis (ICEP) [42, 43].  
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Particles with reflection symmetry, such as the rod-like particles of interest here, 
do not translate due to ICEP, but the motion of the “induced” counter-charges contributes 
to the rotation of the particle [42].  The total rotational motion of a rod-like particle in the 
thin EDL limit includes both the ICEP rotation and the dielectrophoretic rotation.  Yariv 
[44] recently derived generic long time solutions for the ICEP translational and rotational 
velocities of arbitrary shaped conducting particles for the case of Du << 1.  His analysis 
includes the dielectrophoretic contribution to translation of the particle in non-uniform 
electric fields and rotation of the particle in uniform or non-uniform fields.  Squires and 
Bazant [43] extend their translational and rotational ICEP solutions to particles with 
broken symmetries due to partial dielectric coatings and include dielectrophoretic 
contributions to the motion.  Saintillan et al. used slender body theory to model the 
induced charge electroosmotic flow at the surface of cylindrical metal particles and 
demonstrated increased hydrodynamic interactions of particles due to these flows [45].

For ideally polarizable rod-like particles with finite EDL, experimental
measurements of zeta potentials have used variations of Eq. 2 to model translational 
motion [12, 13].  This approach assumes an evenly distributed (random) distribution of 
particle orientations in a dilute suspension of cylinders.  The average electrophoretic 
translation of the particles, 〈u〉, can therefore be described as

( ) ( )2

|| ||0

1cos sin sin 2
3

u u u d u u
π

θ θ θ θ⊥ ⊥= + = +∫ 4

where θ is the angle between the applied field and the major axis of the particle [46].  
Applying the limiting u⊥ and u|| relations of Harris for λD >> a, the average 
electrophoretic translation of a prolate spheroid simplifies to Eq. 2.  Assuming an evenly 
distributed assumption is accurate (as we will discuss below, this is typically not the 
case), the zeta potential of rod-like particles with length >> diameter and thick EDLs is 
measurable using standard commercial zeta potential systems.  Van der Zande et al. used 
this approach to measure the zeta potential of gold cylindrical particles with λD/a values 
ranging from 1.5-6.0 [13].  Using particle tracking, Davison et al. compared experimental 
electrophoretic values to a modified version of Eq. 4 which included the corrections for 
high surface charge of Stigter [12, 25, 26].  The particles investigated were gold cylinders 
with λD/a values of approximately 1.0.  The large (±30%) difference between 
experimental values and predictions was attributed to an orientation dependence of the 
particles.  Both authors however, neglect translation and rotation due to the induced 
dipole moment of the particles.  These effects can alter the measured average 
electrophoretic velocity of the particles.  Han and Yang. have demonstrated the 
significance of the orientation distributions for electrophoresis of spheroidal particles, 
focusing specifically on models for dielectric particles [47].

In this paper, we present analytical and experimental studies of the translational 
and rotational electrophoresis of metal rods with either homogenous or non-homogenous 
surface properties for both the limiting cases of thick and thin EDL.  We also explore the 
coupled effects of rotational electrophoresis, rotation due to gravity, and Brownian 
diffusion.  We include the effects of induced charge electrophoresis (i.e., the effect of 
induced surface charges on the EDL and electrophoretic motion of the particle) and 
dielectrophoresis.  The next section describes our models for electrophoretic particle 
translation and rotation and is divided into five sub-sections describing the thick EDL 
limit particle rotation and translation, the thin EDL limit particle rotation and translation, 
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particle motion in AC fields, particle motion due to gravity, and a Fokker-Plank 
formulation for the orientation distribution of polarized particles.  The Experimental 
Procedure section describes our experiments quantifying particle motion and orientation 
(including a particle image recognition and tracking code).  The Results and Discussion 
section also shows quantitative comparisons between experiments and data.  We close 
with Conclusions and Recommendations.

II. THEORY
This section describes models for particle translation, rotation, and orientation 

statistics.  We consider limiting cases for thick EDL (λD >> c) and thin EDL (λD << b) in 
DC fields, then extend these solutions to AC fields.   We also consider settling velocities 
due to gravity. We model a cylindrical particle with length L and radius r as a prolate 
spheroid with characteristic half-lengths c = L/2 and b =  r, as shown in FIG. 2.  Using 
the spheroidal geometry enables transformation to the curvilinear ellipsoidal coordinate 
system [48] in which the relevant Laplace’s equation is separable.  The axes of the 
coordinate system, x1’, x2’, and x3’, are aligned with the two minor axes (with equal 
lengths b) and the major axis (length c) of the particle, respectively.

FIG. 2. Spheroid geometry used to model the cylindrical particles.  The coordinate 
system is aligned with the x3′ component parallel to the primary axis of the particle.  The 
directional vector, er , is oriented along the length of the particle and the angle of the 
particle is measured between this vector and the direction of the applied field.  The field 
is applied parallel to the direction of the gravitational acceleration vector, gr .

B. Thick EDL Model
For particles with a thick EDL, we propose an approximation for the translation 

and rotation of the particle due to induced charge effects using similar assumptions to 
those used by Hückel [20] in deriving Eq. 2.  These assumptions lead us to a slight 
modification of dielectrophoresis results obtained by Rivette and Baygents [49] and Jones 
[50] for the force and torque on a rod-like metal and dielectric particles respectively.  The 
analysis is also extended to include the effects of stripes along the length of the particle 
on the translation and rotation of the metal particles.

For the thick EDL case the double layer around the particle is extended and the 
motion of EDL counterions does not appreciably contribute to particle drag.  Particle 
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motion is therefore assumed to be a balance between the electrostatic force and torque on 
the particle and the hydrodynamic drag.  This assumption was implemented by Hückel 
[20] to derive Eq. 2 and by Han and Yang. [47] in deriving the equations describing the 
translation and rotation of dielectric rod-like particles.  This analysis is appropriate for 
spherical particles when λD >> as (where as is the radius of a sphere).  For cylinders, 
however, the strictest condition for thick double layers is such that the Debye length is 
much larger than the half-length of the cylinder (λD >> c).  As a simple model, we here 
use a strict thick double layer model (λD >> c) to estimate the physics of the intermediate 
double layer thickness regime when the Debye length exceeds the particle radius but is 
less than the particle half length (b < λD < c).  As we shall see in Section IV, the thick 
double layer model does very well in predicting particle alignment physics for electric 
double layer thicknesses larger than cylinder radius and smaller than the cylinder half 
length.

The thick EDL electrophoresis problem is separated into two parts:  the motion 
due to the induced polarization of the particle (subscript DEP to denote 
dielectrophoresis), and the motion due to a (perhaps non-uniform) native zeta potential.  
Force and torque are then summed to obtain the following equations of particle motion,

( )
||

Thick DEP natd d⊥

 −
= + ⋅ +  

 

ee I eeu F F and 5a

( )
,|| ,

Thick DEP natd dθ θ ⊥

 −
= + ⋅ +  

 

ee I eeω T T 5b

where d|| and d⊥ are the translation drag coefficients and dθ,|| and dθ,⊥ are the rotational 
drag for rotation about the primary and secondary axes.  

The force and torque on a metal particle are due to the Maxwell stresses acting on 
the on the particle surface.  The general expressions for this force, FDEP, and torque, 
TDEP, are 

( )
2

2
p

DEP
S

E dSε
 

= ⋅ − 
 ∫F n E E n and 6a

( )
2

2
p

DEP
S

E dSε
 

= × ⋅ − 
 ∫T r n E E n 6b

where E is the local electric field and n is everywhere normal to the particle surface [51, 
52].  Using a multipole expansion and ignoring far-field effects, Rivette and Baygents 
[49] reformed Eqs. 6a-b in terms of the applied electric field, E∞,

( ) ( )1
2

p

DEP
S

dSε ∞ ∞ ∞ ∞
 = ⋅ − ⋅ 
 ∫F n E E E E n 7a

which simplifies to FDEP=0 since the applied field E∞ is uniform, and
( )DEP p ∞ ∞= ⋅ ×T M E E . 7b

The polarization tensor, Mp, is derived from the dipole moment on the conducting 
particle under the conditions described by Eq. 17 but with the boundary condition 

0condφ = on the particle surface.  The tensor depends on the shape of the particle and for a 
spheroid is as follows, 
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( )
||

p p
p

V V
L L

ε ε

⊥

= + −M ee I ee 8

Here we have expressed Mp in terms the volume of the spheroid, permittivity of the 
medium, and the polarization factor, L.  The polarization factor is defined as

( ) ( )
1
2

2

1 2 22 2
0

,
2

b c dsL L L
s c s b

∞

⊥= =
+ +

∫ and 
( ) ( )

3
2

2

3 ||
2 2

02
b c dsL L

s c s b

∞

= =
+ +

∫ 9

which can be determined analytically in terms of the aspect ratio, α ≡ b/c (c > b),

( ) ( )
( )
( )

1 222

3 2 1 22 2 2

1 11 ln
2 1 4 1 1 1

L
αα

α α α
⊥

 + − = −
 − − − − 

10

( ) ( )
( )
( )

1 222 2

|| 3 2 1 22 2 2

1 1
ln

1 2 1 1 1
L

αα α
α α α

 + − = − +
 − − − − 

. 11

The resulting dielectrophoretic translation and rotation of the spheroid particle in a 
uniform electric field is:

0DEP =u and 12a

( )
, | | || ,

p p
DEP

V V
d L d Lθ θ

ε ε
∞ ∞

⊥ ⊥

  
= + − ⋅ ×      

ω ee I ee E E . 12b

We use a similar analysis to estimate the force and torque on a striped particle due 
to segments of varying surface charge density, σ(z), along the length.  We can relate the 
surface charge to the native zeta potential through the capacitance, calculated by Jeans 
[53] for a conducting prolate spheroid as

1
2

2

2

1 14 1 ln
1 1

sC c α
π ε α

α

−
 + −

= −   − − 
. 13

This capacitance is for a uniform cylinder.  For the case of a striped particle, we treat the 
contributions of the various metal stripes by linearly superposing their capacitance values 
(as with capacitors in parallel).  We note that Eq. 13 is therefore only an approximation to 
the true overall capacitance value of a striped particle and should be valid when the stripe 
length is greater than the rod radius.  For narrow stripes, this equation may not fully 
describe the stripe-to-stripe electrostatic interaction.

The force on the particle due to the native zeta potential is obtained by integrating 
over the surface area to find the net Coulombic force on the surface,

( )
1

1

' '
2

s
nat

C Z dZζ∞

−

= ∫EF . 14a

The net torque determined from the Coulombic forces and respective moment arms is 
1nat ∞= ×T p E , 14b

where

( )
1

1
1

' ' '
2
sC c Z Z dZζ

−

= ∫p e . 14c
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The translational drag components in Eq. 5 are calculated as quasi-static (i.e., 
neglecting inertia) values for Stokes flow around a spheroid particle [54] .  The drag on a 
spheroid with an aspect ratio, α << 1, moving parallel to the primary particle axis is 
approximated as [55]

( )||
4

ln 2 / 1/ 2
cd πη

α
≈

−
, 15a

and the drag for motion perpendicular to the primary axis is approximated as

( )
8

ln 2 / 1/ 2
cd πη

α⊥ ≈
+

. 15b

Since rotation about the primary axis is not of interest, we ignore the rotational drag 
component dθ,||.  The hydrodynamic drag coefficient for rotation about an axis 
perpendicular to the primary axis, dθ,⊥, is approximated as [56]

( )
3

,
8

3 ln 2 / 1 2
cdθ

πη
α⊥ ≈

−  
. 16

If α < ½, the approximations in Eqs. 15 and 16 are within 1.5% of the exact solutions.  
Note that these drag models do not take into account electroviscous (or so-called 
electrolyte friction) effects on particle drag.  The zeta potentials of interest here are less 
than or equal to the thermal voltage, and so we expect electroviscous effects to be 
negligible (see Stigter [57] and van de Ven [58]).  

To confirm the consistency of our solution, we consider two special cases for an 
ideally polarizable spheroidal particle with a thick EDL and a native zeta potential that is 
uniform over the particle’s surface.  If the induced polarization is (incorrectly) neglected, 
the velocity in Eq. 5a for the motion of a spheroid particle oriented parallel and 

perpendicular to the applied field is ||
ou Eεζ

η ∞= and 
2

ou Eεζ
η⊥ ∞= respectively.  Ignoring 

the polarization would suggest that the particle does not rotate.  These translational 
velocities for a particle with aspect ratio α << 1 match those suggested by Harris [21] for 
a dielectric particle.  If the effects of induced polarization are included, the translation 
still reduces to the translational velocity limit proposed by Harris, although the particle 
will rotate.  For a particle with aspect ratio α = .05, (e.g. the particles used in this study), 

the values for the translational velocities are ||
13
15

ou Eεζ
η ∞= and 

17
30

ou Eεζ
η⊥ ∞= .

B. Thin EDL Model
In the case of a thin EDL, double layer polarization induces a non-uniform 

potential along the particle surface which we refer to as the induced zeta potential.  This 
induced zeta potential can be interpreted as the potential associated with ionic charge 
which is accumulated at a non-reacting particle surface.  We solve for this zeta potential 
by subtracting the electrostatic potential at the particle surface when the field is initially 
applied from the potential at the surface after the double layer has polarized.  The induced 
zeta potential is then used to find the resulting ICEP translation and rotation of 
homogenous metal particles.  As discussed previously, particle motion in the thin EDL 
limit is the superposition of ICEP and dielectrophoresis (see reference [43, 59] for a 
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detailed discussion of this superposition).  We therefore solve for the ICEP motion and 
add this solution to the dielectrophoretic motion calculated from the thick EDL model. 
For particles with metal stripes, we consider the additional translation and rotation due to
permanent dipoles generated by forces on the different surface charge for each material.  

For the thin EDL case (λD << b), we assume the particle is suspended in a 
symmetric electrolyte and the potential at the particle surface, ζo+E∞c, is sufficiently 
small to maintain the inequality (λD / b)exp(ze(ζo+E∞c)/2kT) << 1.  As mentioned above, 
upon application of an external field, E∞, electrons within the metal particle quickly 
redistribute themselves (after a time scale of order εp/σp) and maintain an equipotential 
particle surface (as in FIG. 1a).  The electrostatic potential, φcond, outside the particle can 
be found by solving 

2 0condφ∇ = , 17a
subject to the boundary conditions 

cond oφ φ= on the particle surface and 17b

cond Eφ ∞∇ = − far from the particle. 17c
We choose the applied electric potential at the particle center to be zero, φ∞ (x = 0) = 0.  
The potential at the surface of the particle, φo, is then approximated as the “native” zeta 
potential of the particle, ζo.  

After the εmc/σsλD timescale (FIG. 1b), the potential outside the particle, φins, can 
be found by solving,

2 0insφ∇ = , 18a 
with the boundary conditions 

0insn φ⋅∇ = at the particle surface and 18b

ins Eφ ∞∇ = − far from the particle. 18c
The “induced” zeta potential, ζf, describing the final polarized state of the double layer is 
obtained from the difference between the potentials of φcond and φins at the potentials at 
the particle surface, Sp, so that ( ) ( )f cond p ins pS Sζ φ φ= − .  

The potential distribution outside a conducting spheroidal particle in a uniform 
field, E∞, is found by simplifying the known solution for an ellipsoid (in ellipsoidal 
coordinates) [45] to a spheroid (in spheroidal coordinates):

( )
3

, '
1

( )' '
i

i
cond o x i

i i

KE x E x
L

ξ
φ ζ∞ ∞

=

= − ⋅ + +∑ 19

where Li is defined in Eq. 9.  The function, Ki(ξ), is defined as

( ) ( )
1
2

2

1 2 22 2
,

2
b c dsK K K

s c s bξ

∞

⊥= =
+ +

∫ and 
( ) ( )

3
2

2

3 ||
2 22

b c dsK K
s c s bξ

∞

= =
+ +

∫ 20

where the integration bound, ξ, is the spheroidal coordinate describing the spheroid 
surfaces which are confocal with the particle surface.  s is a dummy integration variable.  
The solution for the potential φcond(Sp) is specified in the boundary conditions for Eq. 17
as ζo and is the value obtained when integrating Eq. 19 over the surface of the particle 
(ξs=0).
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Next, the solution for the potential distribution outside an insulating spheroidal 
particle in a uniform field, E∞, is 

( ) ( )
3

, '
1

' '
1i

i
ins o x i

i i

KE x E x
L

φ ζ∞ ∞
=

= − ⋅ + +
−∑ 21

Again, the solution is found by simplifying the known solution for an ellipsoid (in 
ellipsoidal coordinates) [45] to a spheroid (in spheroidal coordinates) [51].   The potential 
at the surface of the insulating spheroid, φins(Sp), is then

( ) ( ) ( )
31 2 , ' 3, ' 1 , ' 2

||

'' '
( )

1 1 1
xx x

ins p

E xE x E x
S

L L L
φ ∞∞ ∞

⊥ ⊥

= − − −
− − −

, 22

and the resulting induced zeta potential is

( ) ( ) ( ) ( )
31 2 , ' 3, ' 1 , ' 2

||

'' '
1 1 1

xx x
f p o

E xE x E x
S

L L L
ζ ζ ∞∞ ∞

⊥ ⊥

= + + +
− − −

. 23

Next, we use the sum of the native and induced zeta potentials as a boundary 
condition to a continuum flow balance of viscous and electric forces around the particle.  
The electrophoretic particle motion is found by solving the Stokes equations with an 
additional term to account for the body force on the charge of the EDL resulting from ζf.  
We separate this boundary problem into two regions, the “inner” and “outer” regions, and 
solve using a method of matched asymptotic expansions.  The inner region extends to the 
edge of the double layer, Sp

+, where the body force acting on the charge, ρeE, drives the 
flow.  In the outer region, the liquid outside the double layer, the charge density, ρe, is 
essentially zero and the Stokes equation reduces to its classical form.  The velocity at Sp

+, 
determined from this matched asymptotics analysis, produces a net rotation and 
translation of the particle formulated using the Lorentz reciprocal theorem.  Fair and 
Anderson [60] implemented this technique for an ellipsoidal particle to obtain the 
following solutions for the translation and rotational velocities of an ellipsoidal particle 
subject to an arbitrary slip velocity field, vs, 

( )1
3

p

s
Sp

dS
V +

= − ⋅∫∫u n r v and 24a

( )1
Sp

s
p

dS
V +

= − ⋅ ⋅ ×∫∫ω G n r r v 24b

where u is the translation velocity of the center of mass and ω is the rotational velocity 
vector.  For a spheroid, ( ) ( ) ( )1 12 2 22b b c

− −
= + + −G ee I ee , and Vp=4/3b2c is the volume 

of the particle.   e is a unit vector along the primary axis.  For electrophoretic motion, the 
slip velocity at the shear plane around the particle is 

s s
εζ
η

= −v E 25

which is equivalent in magnitude to Eq. 1.  In the current problem, ζ may vary over the 
particle’s surface and the vector, Es, is the “local” electric field at Sp

+. The local field is 
determined from the gradient of Eq. 22, 
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( ) ( )
( )
( )|| 11s ins LL

φ ∞
⊥

 −
 = −∇ = − ⋅ + ⋅
 −− 

I eeeeE I nn E . 26

Together, Eqs. 23-26 provide the ICEP translational and rotational velocities of an 
ideally polarized spheroidal metal particle with any arbitrary native zeta potential, ζo.  
Since the zeta potential is a scalar value, uThin and ωThin can be represented as  

Thin DEP ICEP nat= + +u u u u and 27a

Thin DEP ICEP nat= + +ω ω ω ω 27b
where uDEP and ωDEP are the translation and rotation due to dielectrophoresis defined in 
Eq. 12, uICEP and ωICEP are due to ICEP, and unat and ωnat are due to the native zeta 
potential.  The translation due only to ICEP is 

( )
3

p

ICEP s ins
Sp

dS
V
ε φ

η +

= − ⋅∫∫u n r E 28a

which is identically zero.  The rotation due to ICEP is

( )
p

ICEP s ins
Sp

dS
V

ε φ
η +

= − ⋅ ⋅ ×∫∫ω G n r r E . 28b

These results demonstrate that the polarization causes particle rotation but does not affect 
translation, as polarization does not change the net charge of the particle/EDL system.  
This holds for metal particles with and without uniform zeta potentials.

The native zeta potential of striped-metal particles will vary along the length of 
the particle due to the varying surface chemistry. The zeta potential is therefore only a 
function of the location along the length, ζo=ζo (z’).  In this case, the translation and 
rotation of the particle are [60]

( )2,|| 2,

2 2
o

nat
aε

η
⊥

∞

+ − 
= − ⋅ 

 

A ee A I ee
u I E and 29a

1
3
4nat c

ε
η ∞= ×ω a E . 29b

The terms ao, a1, and A2 are determined from the distribution ζo (Z’) with Z’=z’/c:

( )
1

1

' 'o oa Z dZζ
−

= ∫ , 30a

( )
( )

( )
( )

2 2 21

1 2 2 4
1

1 ' 1' '
'

1 1 ' 1
o ZZ Z
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L Z

α αζ

α α− ⊥

 + + −
 =
 − + + − ∫a e , 30b
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( ) ( )( )
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' 1' 1 '
1 1 1 '

o
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L Z
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 − = +
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∫A , and 30c
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1
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' 1 '

2 1 1 1 '
o

Z
Z dZ

L Z

α
ζ

α
⊥

− ⊥

 + −
 = −
 − + − 

∫A . 30d

Two interesting cases arise for an ideally polarizable spheroidal particle with a 
native zeta potential that is uniform over the particle’s surface.  If the induced 
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polarization is (incorrectly) ignored, the velocity in Eq. 29 reduces to Eq. 1 and rotation is 
zero, consistent with the results of Morrison [18] and Teubner [19].  If the effects of 
induced polarization are included, the translation still reduces to Eq. 1, consistent with the 
results of Simonov and Dukhin [39], but the particle  rotates.  

Eq. 29b shows that applied fields can generate rotational velocities on particles 
with non-uniform native zeta potentials.  In such cases, particle orientation is a function 
of the zeta potential distribution along the particle.  In most cases, the particle will align 
with the more positively charged end towards the low potential electrode and the more 
negatively charged end towards the high potential electrode.  The rotations described by 
Eqs 12b and 28b also tend to align the particles with the applied field.  Since the 
polarization is dependent on orientation, this rotational displacement will be less than 
ninety degrees (assuming no Brownian motion).  The rotational velocities in Eq. 27b 
superpose linearly and generally compliment one another.  Although note that the case 
can arise in which ωnat may oppose ωDEP and ωICEP if, for example, the particle were 
initially oriented with the more positively charged end towards the high potential 
electrode.  

C. AC Field Effect
The results in Sections A and B for direct current (DC) applied fields can be 

modified for alternating current (AC) fields.  This modification is often necessary since 
AC fields are commonly used in electrophoresis experiments to avoid electroosmosis of 
the bulk fluid.  The applied field may be written as E∞(x’,t) = E∞(x’)Re[exp(iωot)], 
where E∞(x’) is the spatial component of the applied field, i = 1− , ωo is the angular 
frequency of the applied field, t is time, and Re denotes the real part of the expression.  
The time-averaged translation and rotation may be computed by substituting the field 
E∞(x’,t) for E∞(x’) in the velocities in Eqs. 5 and 27 then integrating them as [49]

( )
2

0

,
2

o
o x t dt

π ωω
π

′= ∫u u and 31a

( )
2

0

,
2

o
o x t dt

π ωω
π

′= ∫ω ω . 31b

The resulting time-averaged velocities in a spatially uniform field will be 〈u〉 = 0
for all translational velocities.  Similarly, the time-averaged rotational velocities due to 
the permanent dipole on a particle with thick or thin EDL will be 〈ωnat〉 = 0.  Time 
averaging the rotational velocities due to the induced polarization reduces the velocities 
by a factor of ½ such that 〈ωICEP〉 = ωICEP/2 and 〈ωDEP〉 = ωDEP/2.  The polarizability of a 
dielectric particle in an AC field becomes complex with a dependence on complex 
permittivity of the particle and the medium.  For metal particles, the permittivity term in 
the velocity equations remains real.

D. Gravitational Settling
Gravitational forces also contribute to the translation and rotation of rod-like 

metal particles.  The settling problem is separated into two parts: the motion due to 
gravity and the motion due to buoyancy.  Force and torque are summed to obtain the 
following equations for particle motion,
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( )
||

s grav buoyd d⊥
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with drag components, d, from Eqs. 15 and 16 [55].  The gravitational and buoyant forces 
on a spheroidal particle with non-uniform density along its length, ρp(Z’), are defined as 

( )( )
1

2 2

1

1grav p pm a c Z Z dZπ ρ
−

′ ′ ′= = −∫F g g and 33a

buoy f p fm V ρ= =F g g 33b
where mp is the mass of the particle, mf and ρf are the mass and density of the fluid 
displaced by the particle, and g is the gravitational acceleration vector shown in FIG. 2.  
For a uniformly dense particle, the density function can be replaced by a constant value, 
ρp, and the gravity force reduces to Fgrav=Vpρpg.

The settling velocity resulting from the forces in Eq. 33 depends on the particle 
orientation which may be affected by gravitational and buoyant torques. The 
gravitational torque on a spheroidal particle with non-uniform density along its length is 

( )( ) ( )
1

2 2 2

1

1grav p cm p cmm a c Z Z Z Z dZπ ρ
−

′ ′ ′ ′ ′= × = − − ×∫T r g e g , 34a

with the moment arm about the center of mass, rcm, defined as

( )( )( )
12

2

1

1cm cm p
p

a cZ Z Z Z Z Z dZ
m

π
ρ

−

′ ′ ′ ′ ′ ′ ′= − = − −∫r . 34b

The buoyant torque on a spheroidal particle with moment arm about the center of 
buoyancy, rcm, is 

buoy f cbm= ×T r g 35
which simplifies to Tbuoy = 0 for spheroidal particles.  Particles can have a significant 
gravitational rotation due to the large difference in specific gravity between the 
contrasting metals in the particle stripes. The resulting velocities from the gravitational 
force may be superimposed with the electrophoretic solutions for DC or AC fields to 
determine the net motion of the particle.

E. Fokker-Planck Formulation for Orientation Distribution
The rotational velocities described by Eqs. 5 and 27 above for the respective 

limits of λD >> c and λD << b tend to align particles toward a preferred orientation with 
respect to the applied field.  For the case of a spatially uniform field, particles are aligned 
with the major axis parallel to the applied field.  If the field is applied parallel to the 
direction of gravity, particle alignment may be enhanced by a gravitational torque.  This 
(deterministic) alignment due to rotational electrophoresis and gravity is counterbalanced 
by the (entropic) forces of diffusion.  A population of particles (in a dilute mixture of 
particles with large particle-to-particle distances) will then acquire a probability density 
function (PDF) describing the orientation distribution, ψ.  This distribution is governed 
by the Fokker-Planck equation
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( ) 0
t θ

ψ ψ ψ∂
+ ∇ ⋅ − ⋅∇ =

∂
ω D 36

in which ω is the angular velocity vector (〈ω〉 in an AC field) and Dθ  is the coefficient 
tensor of rotational diffusion [61].  This equation describes the rotational convective 
diffusion of the particles assuming negligible particle-particle interactions.  For an 
axisymmetric particle such as a spheroid, ω is the angular velocity about the particle’s 
minor axis and Dθ becomes a scalar quantity,

( ), 3
3/ ln 2 / 1 2

8
kTD kT d c b

cθ θ πη⊥  = = −  37

describing the rotational diffusion coefficient perpendicular to the primary axis with dθ,⊥
defined by Eq. 16.  Assuming the distribution has reached a steady-state and rotation into 
the plane (angle ϕ) is ignored, Eq. 36 can be non-dimensionalized as

( )sin cos sin sin sin 0pol perm
d dPe Pe

d d
ψ

θ θ θ θ θ
θ θ

 + + =  
38

where Pepol = ||ωpol||/Dθ and Peperm = ||ωperm||/Dθ are the rotational Peclet numbers for the
induced (DEP and ICEP) and permanent dipoles, respectively.  The permanent dipole 
parameter may include rotation due to gravity or non-uniform native zeta potentials in a 
DC field.  The solution of ψ(θ) must satisfy the integral normalization condition, 

( )
0

2 sin dθ 1
π

π ψ θ θ =∫ . 39

This general equation applies to either the thin or thick EDL case since we use a non-
dimensional Pe.  Analytical and numerical solutions to Eq. 38 were developed to ensure 
consistency.  The analytical solution is obtained by direct integration of Eq. 38:

( ) ( )2exp cos 1 cos
2

pol
o perm

Pe
Peψ θ ψ θ θ

 
= − + 

 
. 40

The normalization value of the PDF, 1/ψo, is difficult to obtain analytically and is here 
calculated numerically.  

We have confirmed our solution for ψ(θ) given by Eq. 40 using a Monte Carlo 
simulation of the rotational electrophoresis and diffusion problem.  The solution of the 
rotational Langevin equation [62] is

, ,

( ) ( )( ) ( )L
L

d tI tt t
d dt dθ θ

ω λω ω
⊥ ⊥

+ = + 41

in which the dynamics of the particle are modeled for individual time steps to determine 
the overall orientation statistics [61, 63].  In Eq. 41, I is the moment of inertia of the 
particle, ωL(t) is the angular velocity of the particle at time t, ω(t) is the velocity due to 
the external field (Eq. 5b for thick EDL or Eq. 27b for thin EDL plus Eq. 32b for 
gravity), and λ(t)/dθ,⊥ is the normalized white noise driving torque due to Brownian 
motion.  The inertial term is ignored as the particle dimensions are on the order of a 
micron.   A comparison of the normalized analytical result in Eq. 40 and numerical 
results (from Monte Carlo simulations of Eq. 41) is shown in FIG. 3 for varied 
combinations of Pepol and Peperm.  The Monte Carlo solution used 1000 time steps and 
10,000 non-interacting particles for each combination of  Pepol and Peperm values.   
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FIG. 3. Comparison of analytical and numerical solutions for the normalized orientation 
distributions of spheroidal particles with a dipole contribution from polarization and a 
permanent dipole from native surface charge and/or gravity. Several Peclet number 
combinations were selected to confirm consistency between the solutions over a range of 
conditions.  The symbols show selected data points for the orientation distribution 
solution solved numerically using a Monte Carlo solution of the Langevin equation.  The 
solid lines are the analytical solutions to the Fokker-Planck equation for the orientation 
distribution.

The Fokker-Planck analysis and the Monte Carlo simulation methods are 
consistent, and the normalization method for the analytical solution robust.  For even 
moderate values of either Penat or Peperm, the orientation distribution is significantly non-
uniform.  This shows that assumptions of equally-distributed orientation for the purpose 
of estimating translation motion may be incorrect even at relatively low fields, especially 
for particles with a non-uniform native zeta potential.  Eq. 4 in fact requires a 
modification to weight the translational velocities by the shape of ψ(θ): 

( )( )
2

||
0

cos sin sinu u u d
π

ψ θ θ θ θ θ⊥= +∫ . 42

Eq. 42 describes the average (over a population of dilute particles) translational velocity 
as determined by the rotational orientation distribution.  

III. EXPERIMENTAL PROCEDURE
We have performed experiments quantifying the motion and rotational 

distribution of metal rod-like particles subject to electric fields.  We use a dilute particle 
solution and both relatively high and low conductivity solutions to explore the effects of 
double layer thickness.  The particles were aligned in an AC electric field to minimize net 
translation due to electrophoresis.  We use a setup where particles are allowed to settle 
along the axis of a channel, and use custom particle image recognition and tracking 
routines to quantify particle motion.  We use this data to validate our particle rotational 
electrophoresis models.  
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A. Particle Imaging Setup
The particle orientation experiments were performed in a borosilicate capillary 

with a 200 µm by 2 mm rectangular cross section (Vitrocom, Mountain Lakes, NJ).  The 
capillary was 10 cm in length and mounted vertically using an acrylic fixture to minimize 
interaction of particles with capillary walls as they settle. A schematic of the 
experimental setup is shown in FIG. 4.

The particles investigated were pure silver (111111), pure gold (000000), and 
fifty percent gold and silver (111000) Nanobarcode® particles (Nanoplex, Menlo Park, 
CA).  The binary code identifies the particle type where 1 indicates silver and 0 gold. 
They have lengths of 6 µm +/- 30 nm and diameters of 318 nm +/-50 nm [1, 3].  The two 
working liquids were deionized water (pH 5.5, 2 µS/cm) and potassium chloride solution 
(0.14 mM, pH 5.3, 21 µS/cm).  No surfactants were added to the working or particle 
solutions.  For each experiment, a single particle type was introduced into the capillary
along with a working solution and allowed to equilibrate to eliminate any flow due to a 
pressure head.  The particles were electrokinetically oriented by an alternating electric 
field applied along the length of the capillary with platinum wires.  The alternating field 
eliminated any net electroosmotic or pressure driven flows in the capillary.  A Trek 
10/10B amplifier amplified the field supplied from an Agilent 3200 waveform generator.

FIG. 4. Schematic of the experimental setup for particle imaging experiments.  Particles 
flow through a capillary supported by a flow cell oriented perpendicular to the 
gravitational vector.  The ends of the flow cell are connected to a high voltage amplifier 
that supplies the amplified AC signal from a function generator.  The particles are imaged 
using a CCD camera and 60x magnification objective.  Particle illumination is provided 
using forward scatter from a halogen light source.
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The imaging system, shown in FIG. 4, consists of a Nikon inverted epifluorescent 
microscope with a ninety-degree mirror placed between the objective turret and the 
objective; this changes the vertical object plane to a horizontal image plane.  Back 
illumination through the channel was provided by an external halogen light source with a 
fiber optic light guide (Carl Zeiss MicroImaging).  A Nikon oil immersion objective 
(M=60, NA 1.4) with a working distance of 210 µm was used to view the center plane of 
the capillary.  Images of the particles within the capillary were recorded using a Cooke 
Pixelfly CCD camera (Cooke Corporation, Romulus, MI) with a 640 by 480 pixel array 
and 12-bit readout resolution.  The camera was externally triggered with a pulse 
generator (Berkeley Nucleonics Corporation, San Rafael, CA) to obtain images at frame 
rates ranging from 1 to 5 fps.   A 0.6x demagnifying lens was included in the optical path 
on the camera port to enable the CCD array to capture a larger field of view with a 
negligible loss in image resolution.  A total of 1061 images were taken for each 
experiment.  FIG. 5 shows representative images of particles settling through the flow 
cell with and without an applied field.  Each of the images in FIG. 5 were obtained by 
arithmetically summing nine images with low particle density.   

FIG. 5.  Pure silver particles in DI water imaged as they settle through the flow cell.  (a) 
Summation of 9 images at 3.3 s intervals showing the particles settle in random 
orientations without an applied field.  Typical settling velocities are on the order of a few 
microns per second and vary depending on orientation.   (b) Summation of 9 images at 
3.3 s intervals showing particles in an AC field of 100 V/cm at 100 Hz applied along the 
gravity vector.  The field aligns the particles as they settle causing them to settle faster 
than randomly oriented particles. 

Typically, we limit particle density so that we obtain 5 to 10 particles in each image 
(corresponding to particle number densities of 7.7e4 to 1.5e5 particles/µL and nL3 values 
of 2e-3 to 4e-3).  Three example two-dimensional probability density functions of particle 
locations are shown in FIG. 6.  The figure shows the probability density of finding some 
part of the particle surface at some position relative to the particle center.  Data from 
three representative field strengths are shown.

The effects of image noise in the experimental data required that we perform 
measurements of the particle rotational diffusivity.  We measured this value for Ag 
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particles at ten frame rates varying from 2 to 20 fps.  The particles were imaged while 
settling through the vertical capillary with no applied electric field.

FIG. 6.  Measurements of two 
dimensional probability density 
functions of Ag particles in 
deionized water determined from 
image data.  Each PDF 
demonstrates the probability density 
of finding some part of the particle 
at each given location relative to its 
center.  PDFs were constructed by 
analyzing images of approximately 
5000 particles at three electric 
fields.  (a) PDF for an applied field 
of 10 V/cm.  At this field strength, 
the torque on the particles due to 
polarization is relatively weak 
compared to their thermal energy 
and particles are only weakly 
aligned.  (b) PDF for an applied 
field of 50 V/cm.  The electric 
torque more strongly aligns 
particles in the direction of applied 
field although the effect of diffusion 
is still apparent.  (c) PDF for an 
applied field of 90 V/cm.  At this 
field strength, the rotational 
electrophoresis dominates over the 
effects of diffusion.

We also performed experiments with a 30 V/cm sinusoidal field and applied 
frequencies ranging from 100 to 800 Hz using pure silver particles in potassium chloride 
solution (0.1 mM, pH 5.3, 21 µS/cm) working solution.  The latter experiments were used 
to select an alternating field frequency that ensured quasi-steady particle motion while 
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exceeding the detectable limit of discrete oscillations in the translation of the metallic 
particles.  Discrete oscillations were undetectable in frequencies above 10 Hz (100 ms 
period) for the conditions explored.  The 10 ms period (or 100 Hz frequency) of the 
alternating field was beyond all relevant timescales for the particle motion.  This is 
confirmed in FIG. 7 which shows a plot of measured rotational Peclet numbers obtained 
from imaged orientation distributions versus the period of the applied field.    The 
rotational Peclet numbers are constant in the low frequency region of interest as the 
particle motion is in the electrostatic charging regime. 

FIG. 7. Peclet number of experimentally determined orientation distributions of 
homogenous Ag particle for an applied field of 30 V/cm.  The period of the field is varied 
from 1.25-10 ms to show the quasi-steady nature of the particle alignment beyond time 
scale τVD=a2/Deff, for diffusion through the double layer.

B. Particle Tracking Velocimetry
Particle images were analyzed using a custom particle tracking code written in 

MATLAB (The MathWorks, Inc., Natick, MA).  Each image was interrogated to find the 
major axis angle and the coordinates of the particle image centroid.  The code analyzes 
the projection of the particle orientation onto the image plane (the depth of field was 
2.8 µm).  Particle positions in succeeding image pairs were then compared to determine 
particle translation and rotational motion.   Individual particles were identified across 
images using a “best match” routine described below.  

A typical experiment consisted of a series of 1061 images of particles.  Particles 
settled at approximately 4 µm/s and so each particle was imaged about 90 times before 
leaving the field of view.  The average image from each experiment was subtracted from 
individual images to remove intensity bias from non-uniform illumination.  The images 
were then filtered using a Weiner filter to reduce white noise, and then binarized based on 
pixel intensity.  Particles were located in the image using a combination of edge detection 
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and morphological processing, as described schematically in FIG. 8.  A Prewitt filter was 
applied to detect the edges of the bright particles on contrasting dark background.  The 
resulting particle outlines were filled then eroded and dilated using a two-by-two pixel 
filter to remove spurious pixels.  The remaining connected regions of light pixels, each 
representing a potential particle, were then fit with an ellipse using MATLAB’s best-fit 
functionality (the regionprops routine).  Potential particles whose representative ellipses 
had an eccentricity greater than 0.97 and a length in the range of 4 to 8 µm were accepted 
as valid particle images.  The centroid coordinates and orientation of each particle were 
then calculated from the remaining representative ellipses (regionprops routine outputs).

FIG. 8.  Image analysis flow chart.  First, the background image from each experiment 
was subtracted from an individual image.  Edge detection with a Prewitt filter was 
utilized to determine particle outlines.  These outlines were enhanced and filled using 
morphological processing including erosion and dilation.  The remaining connected 
regions of light pixels were then fit with an ellipse to determine size and shape for 
thresholding.  Particles whose representative ellipses had an eccentricity greater than 0.97 
and a length in the range of 4 to 8 µm were accepted as valid particle images.  The center 
coordinates and orientation were determined for these particles from the representative 
ellipse.

Particle angular and translational displacements between image pairs were 
calculated for particles which met a “best match” criterion.  The matching scheme used a 
χ-squared test based on the position and orientation of the particle 

( ) ( ) ( )2 2 2
2 1 2 1 2 12

2 2 2
PIV

x y

x x y y y

θ

θ θ
χ

σ σ σ

 − − − ∆ −
 = + +
 
 

43

where the subscripts 1 and 2 refer to the image in which the particle was found, x and y
are the horizontal and vertical coordinates respectively, theta is the particle angle, and σx, 
σy, and σθ are the variances of the locations and angles of all particles in the second 
image.  A similar approach was used by Takehara et al. [64].   We used micron-resolution 
particle image velocimetry [65] (using the entire image as the interrogation area) to 
estimate the uniform average settling drift velocity for the particle field.  The vertical 
shift in the cross-covariance peak between two full images was used to determine the 
average vertical translation due to gravity. The vertical particle shift resulting from a 
cross-covariance of the full images of succeeding image pairs is ∆yPIV in Eq. 43.  The χ-
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squared matching scheme was sufficient for this application as particle-to-particle 
distances were typically 6 µm or larger. 

We quantified the accuracy of the PTV code using synthetic images with added 
Gaussian white noise to mimic images from the experiments.  The PTV code located 
62% of particles in the simulated images.  The code accurately detects the location of 
particles with an uncertainty of approximately one half-pixel in the x or y direction and 
an uncertainty in orientation of 0.02 radians.

C. Diffusivity Measurements
We investigated the rotational dynamics of Ag particles to measure the rotational 

diffusivity in the absence of a field.  These measurements also provided information 
regarding contributions of image noise (including the effects of out-of-focus particle 
regions) to the diffusivity measurements. The particles were imaged at frame rates from 2 
to 20 fps while settling through the capillary.  The rotational deflections of the particles 
between images were calculated with the PTV code.  These deflection results were 
combined over all images (and across particles) at a fixed frame rate and the statistical 
variance in deflection was calculated.  FIG. 9 shows a plot of rotational deflection 
variance versus time between frames (fps-1).  These data were then fit with linear 
regression.    

We model the contributions to particle rotation from image noise and particle diffusion as 
follows:  

FIG. 9. Variance of angular deflections for Ag particles versus the time between 
deflection measurements.   The slope of the experimental data for the particles is 
determined using a linear fit.  The slope of the data set determines the rotational 
diffusivity.  The solid line is the theoretical curve for diffusivity of these 6 µm long by 
300 nm diameter cylindrical particles.  The y-offset of the experimental curve at (fps)-1=0 
is due to image noise.



In press, Physics Review E, 2006 23

2 22measured noiseD tθ θ θσ σ= + 44
where σθ

2, is the variance of the deflections, and t is the time between measurements.  
This additive model is suggested by models used in estimating the contribution of image 
noise to spherical particle displacements [66].  FIG. 9 shows variance data for the rotation 
of Ag particles.  Image noise results in a measurable y-intercept for the extrapolated 
rotational variance data.   We can use the regression fit to solve for diffusivity in Eq. 44
and interpret this as data normalized to exclude image noise in the particle rotational 
displacement statistics.  

We compare the measured diffusivity value for the experimental conditions to 
theoretical values.  The experimental diffusivity value for the Ag particles was 
0.048 rad2/s.  The theoretical value for a cylindrical particle of this size, 0.044 rad2/s, is 
determined using the relation given by Yamakawa [67]. 

( )3

3 ln / 2 2ln 2 11/ 6kTD L b
Lθ πη

= + −   . 45

Our experimental measurement is 9% greater than the theoretical value for a cylindrical 
particle and 14% less than the theoretical diffusivity for a spheroidal particle of equal 
length and diameter, 0.056 rad2/s, from Eq. 37.     

Image noise also contributes to measurements of particle alignment under applied 
electric fields.   Both rotational diffusion and image noise broaden measured orientation 
distribution peaks.  We incorporate the contribution of image noise to predicted particle 
distributions by adding the effective diffusivity due to image noise to the theoretical 
diffusivity predicted by Eq. 37 or 45.  This enables direct comparisons of the model and 
experimental data.  The effective diffusivity due to image noise is defined simply as 

2
, /(2 )n measuredD tθ θσ= .  The data of FIG. 9 yields an image-noise-based diffusivity value 

of Dθ,n=0.59 rad2/s, approximately 20% greater actual rotational diffusivity. This value 
can perhaps be reduced using larger numerical aperture and larger magnification 
objectives but only at the expense of reduced fields of view and significantly less particle 
data per image sequence.  The capillary size used in these experiments was selected to 
minimize particle-wall interaction and necessitated the use of a relatively large working 
distance objective to image the center plane.  The optics optimized the tradeoff between 
NA, magnification, and working distance.

IV. RESULTS AND DISCUSSION
The measured orientation distributions of 6 µm long by 300 nm diameter particles 

were compared versus analytical values at AC field strengths ranging from 10-90 V/cm.  
The experimental orientation distributions were determined by binning measured particle 
angles in all images into forty-one, 4.4 degree increments for each field strength.  We 
performed these measurements for both silver and half gold/half silver particles.  
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FIG. 10. Comparison of theoretical and experimental orientation distributions at five field 
strengths for pure silver particles and half gold / half silver particles with thin EDL 
(λD/b=0.17) and intermediate EDL (λD/b=0.91).  The experimental data are shown using 
dashed lines and open symbols at selected angles.  The solid lines with solid symbols are 
the analytical solutions to the Fokker-Planck equation for the distribution of particle 
angles.  The full range of the plot (-90 to 90 degrees) is not shown.  a) Pure silver 
particles with thin EDL (λD/b=0.17).  b) Half gold / half silver particles with thin EDL 
(λD/b=0.17).  c) Pure silver particles with intermediate EDL (λD/b=0.91).  d) Half gold / 
half silver particles with intermediate EDL (λD/b=0.91).  

To achieve a relatively thin EDL the particles were suspended in 0.14 mM KCl 
solution.  This concentration was selected due to significant particle agglomeration in 
higher conductivity solutions.  The double layer thickness for this solution was 
approximately 26 nm, resulting in a λD/b ratio equal to 0.17.  Values for 
(λD / b)exp(ze(ζo+E∞c)/2kT), regarding the applicability of Eq. 1 for the translation and 
Eqs. 19b and 20b for the rotation, ranged from 0.3-0.5.  This range is based on the sum of 
a native zeta potential of approximately 30 mV and an induced zeta potential magnitude, 
ζ≅E∞c, ranging from 3 to 27 mV.  To achieve a relatively thick EDL the particles were 
suspended in low conductivity (2 µS/cm) deionized water.  This ion concentration was 
the minimum achievable due to carbon dioxide contamination from the atmosphere.  The 
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double layer thickness for particles in the deionized water was approximately 135 nm for 
a λD/b ratio equal to 0.91 and λD/c ratio equal to 0.05.  In this estimate of the double layer 
thickness, we assumed the ions in the water were solely from carbon dioxide 
contamination creating carbonic acid in the water [68].  The minimum and maximum 
λD/b values were also limited by the available particle size.  A compromise was therefore 
made to use representative λD/b values to model the thick and thin double layer limits.

FIG. 11. Standard deviation of particle angles for Ag (a) and Ag/Au (b) particles in high 
and low conductivity solutions with different applied field strengths.  Experimental 
values are calculated directly from the orientation data of all particles at a given field 
strength.  The theoretical curves are determined from the predicted orientation 
distributions with the AgAu curves including predicted alignment due to gravitational 
torque.

The results of the pure silver particle experiments in KCl solution are shown in
FIG. 10a and for half gold / half silver in FIG. 10b.  As the field strength increases, the 
distribution curves for both particle types narrow.  The alignment into the field is 
enhanced by the increase in induced zeta potential and by the stronger field acting on this 
polarized charge.  For Ag/Au particles, the particles are even more aligned than the 
homogenous Ag particles at the same field strength.  This increased alignment is due to 
the additional rotation generated by gravity acting on the non-uniform density of the 
particles.  

The orientation distribution for pure silver particles in DI water is shown versus 
theoretical values in FIG. 10c and for half gold/half silver in FIG. 10d.  For the particles 
in DI water, the alignment was enhanced by increased field strength, similar to the results 
for the particles in KCl solution.  The alignment of the half Au / half Ag particles is 
greater than that of the pure Ag particles due to the additional torque from gravity.

FIG. 11 shows plots of the standard deviation of particle angles versus electric 
field for the homogenous and striped particles in high and low conductivity solutions.  
Experimental values are calculated directly from the orientation data of all particles at a 
given field strength.  The theoretical curves are determined from Eqs. 5b, 27b, 32b, and 
40, and relevant parameters as described above.
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As expected, the gravitational torque due to material mismatch of the half gold / 
half silver particles increases the magnitude of the rotational velocity compared to pure 
silver particles.  This is true for both the high and low conductivity solutions.  Another 
interesting observation is the increased Pepol for the particles with thin double layers 
versus the same particle type with a thick EDL.  The increase in the Pepol value for thin 
EDL demonstrates the magnitude of ICEP rotation on the particle.

Analytical values for the orientation distributions, ψ(θ), were predicted using 
Equation 40 with Peclet number values, Pepol and Peperm.  These Pe values were 
determined based on the theory for ωpol and ωgrav and independent estimates of the 
relevant parameters.  These independent estimates are the particle dimensions (from the 
specification of the manufacturer), the electrolyte ion density (from our buffer 
preparation), and the rotational diffusivity.  We used the experimentally measured 
particle diffusivity values in the analytical prediction of Pe to account for image noise.  
The justification for this modification is explained in detail in Section III-C.  The value 
for the rotational velocity in Pepol was predicted from the time-average of Eq. 27b for the 
thin EDL model.  For the thick EDL model, the rotational velocity in Pepol was predicted
from the time-average of Eq. 5b using the DEP torque value from Eq. 7b. The rotational 
velocity in Pegrav was predicted from Eq. 32b with specific gravity of gold, sgAu=19.3, 
and silver, sgAg=10.5 [69].

The analytical results for the thin EDL particles at field strengths ranging from 
10-90 V/cm are shown using solid lines with closed symbols in FIG. 10a-b.  The model 
provides an upper bound for the alignment of the particles as λD/b→0 and therefore 
consistently over predicts alignment of the particles for the given experimental 
conditions,  λD/b = 0.17.    The model does however predict the increase in particle 
alignment with increased field strength due to polarization.  This is demonstrated by the 
narrowing of the distribution for the Ag particles in FIG. 10a.  The model also captures 
the combined effects of polarization and gravity at low field strength (10 V/cm) as 
demonstrated in FIG. 10b for the half gold / half silver particles.  

The solid lines with closed symbols in FIG. 10c and FIG. 10d show the analytical 
results for ψ(θ).  For the thick EDL case, the experimental and theoretical curves show 
good agreement for both Ag and Ag/Au particles.  The agreement is best for Ag/Au 
particles at low field strengths (10-30 V/cm).  The predicted increase in particle 
alignment due to increased polarization is demonstrated by the narrowing of the 
distribution for the Ag particles in FIG. 10c.  The additional increase in alignment due to 
non-uniform density is also captured in the model.  This result is verified in FIG. 10d for 
the half gold / half silver particles.

FIG. 11a and FIG. 11b compare the predicted and experimental dependence of the 
standard deviation in particle angles on electric field strength for Ag and Ag/Au particles.  
For Ag and Ag/Au particles with thick EDL, the experimental results are predicted within 
10 % over the range of applied fields.   For thin EDL, the theoretical σψ curve provides a
lower bound for predicting the experimental values.   The predictions for the Ag/Au 
particles include the rotation of the particles due to gravity.

 
V. CONCLUSION

We have presented analytical results for the rotation of homogeneous and striped 
rod-like metal particles in an applied field for the limiting cases of thin (λD << b) and 
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thick (λD >> c) electric double layers.  The two models include rotational velocity 
components from (uniform or non-uniform) native surface charge along the particle 
length and the non-uniform induced surface charge due to the conducting nature of the 
particle.  The distribution of particle orientations in a dilute suspension is determined 
from the balance of electric field driven rotation and rotational diffusion.  This 
distribution is especially important for solutions with thick EDL, in which electrophoretic 
translation of rod-like particles is orientation dependent.

The experimental results were presented for solid Ag and for half Ag/half Au 
particles in relatively thin and relatively thick EDL conditions are in good agreement 
with the analytical models for the thick EDL case. For the thin EDL case, the analytical 
models over predict alignment.  This is likely due to the experimental λD/b ratio equal of 
0.17 although the model is for λD/bà0.  For particles with striping patterns that are not 
symmetric about particle length, the net effect of the stripes is to impart a torque on the 
particle due to gravity.  This dipole causes a rotation of the particle that enhances 
alignment.  This enhancement is demonstrated by comparison of results for solid Ag and 
half Ag/half Au particles.  The electric torque on the particle due to induced polarization 
is also shown to be greater for particles with thin versus thick electric double layers.  This 
result is analogous to the comparison of the translational electrophoretic velocity of 
spheres in the thin and thick EDL limits.  

ACKNOWLEDGEMENTS
This work was performed under the auspices of the U.S. Department of Energy by 
University of California, Lawrence Livermore National Laboratory under Contract 
W-7405-Eng-48.



In press, Physics Review E, 2006 28

REFERENCES
[1] C.D. Keating and M.J. Natan, Adv. Mater. 15, 451 (2003).
[2] I.D. Walton, S.M. Norton, A. Balasingham, L. He, D.F. Oviso, D. Gupta, P.A. 

Raju, M.J. Natan, and R.G. Freeman, Anal. Chem. 74, 2240 (2002).
[3] S.R. Nicewarner-Pena, R.G. Freeman, B.D. Reiss, L. He, D.J. Pena, I.D. Walton,

R. Cromer, C.D. Keating, and M.J. Natan, Science 294, 137 (2001).
[4] J. Hahm and C.M. Lieber, Nanoletters 4, 51 (2004).
[5] L.A. Bauer, N.S. Birenbaum, and G.J. Meyer, J. Mater. Chem. 14, 517 (2004).
[6] J.F. Klemic, E. Stern, and M.A. Reed, Nat. Biotechnol. 19, 924 (2001).
[7] Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.-H. Kim, and C.M. Lieber, Science 

294, 1313 (2001).
[8] K.D. Hermanson, S.O. Lumsdon, J.P. Williams, E.W. Kaler, and O.D. Velev, 

Science 294, 1082 (2001).
[9] D.H. Reich, M. Tanase, A. Hultgren, L.A. Bauer, C.S. Chen, and G.J. Meyer, J. 

Appl. Phys. 93, 7275 (2003).
[10] S. Evoy, et al., Microelectron. Eng. 75, 31 (2004).
[11] P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J. Mbindyo, 

and T.E. Mallouk, Applied Physics Letters 77, 1399 (2000).
[12] S.M. Davison, T.S. Mayer, and K.V. Sharp, in ASME,(Anaheim, CA, 2004) 
[13] B.M.I. Van der Zande, J.K.G. Dhont, M.R. Böhmer, and A.P. Philipse, Langmuir 

16, 459 (1999).
[14] J. Lyklema, Solid-Liquid Interfaces, Fundamentals of Interface and Colloid 

Science (Academic Press, San Diego, 1995), Vol. 2.
[15] J.L. Anderson, J. Colloid Interf. Sci. 105, 45 (1985).
[16] A. Sellier, Q. J. Mech. Appl. Math. 55, 561 (2002).
[17] R.J. Hunter, Zeta potential in colloidal science (Academic Press, San Diego, 

1981).
[18] F.A. Morrison, J. Colloid Interf. Sci. 34, 210 (1970).
[19] M. Teubner, J. Chem. Phys. 76, 5564 (1982).
[20] E. Huckel, Physik. Zeitsch. 25, 204 (1924).
[21] L.B. Harris, J. Colloid Interf. Sci. 34, 322 (1970).
[22] D.C. Henry, P. Roy. Soc. Lond. A Mat. 133, 106 (1931).
[23] H. Ohshima, J. Colloid Interf. Sci. 180, 299 (1996).
[24] B.J. Yoon and S. Kim, J. Colloid Interf. Sci. 128, 275 (1989).
[25] D. Stigter, J. Phys. Chem. 82, 1417 (1978).
[26] D. Stigter, J. Phys. Chem. 82, 1424 (1978).
[27] N.A. Mishchuk and S.S. Dukhin, Colloid J.-USSR 50, 952 (1988).
[28] R.W. O'Brien and D.N. Ward, J. Colloid Interf. Sci. 121, 402 (1988).
[29] C.C. Ho, R.H. Ottewill, and L. Yu, Langmuir 13, 1925 (1997).
[30] S.S. Dukhin, Adv. Colloid Interfac. 44, 1 (1993).
[31] S.P. Stoilov and S.S. Dukhin, Colloid J.-USSR 32, 631 (1970).
[32] V.R. Estrela-Lopis, V.N. Shilov, S.S. Dukhin, and S.P. Stoilov, Colloid J.-USSR 

35, 578 (1973).
[33] V.N. Shilov, Y.Y. Rozen, and S.S. Dukhin, Colloid J.-USSR 36, 1133 (1974).
[34] V.V. Malyarenko, F.D. Ovcharenko, and V.P. Estrella-Lopez, Dokl. Akad. Nauk. 

SSSR+ 215, 321 (1974).



In press, Physics Review E, 2006 29

[35] M. Fixman, J. Chem. Phys. 72, 5177 (1980).
[36] M. Fixman, Macromolecules 13, 711 (1980).
[37] S.S. Dukhin and V.N. Shilov, Adv. Colloid Interfac. 13, 153 (1980).
[38] M. Mandel and T. Odijk, Annu. Rev. Phys. Chem. 35, 75 (1984).
[39] I.N. Simonov and S.S. Dukhin, Colloid J.-USSR 35, 173 (1973).
[40] T.M. Squires and M.Z. Bazant, J. Fluid Mech. 509, 217 (2004).
[41] M. Fixman and S. Jagannathan, J. Chem. Phys. 75, 4048 (1981).
[42] M.Z. Bazant and T.M. Squires, Phys. Rev. Lett. 92, 066101/1 (2004).
[43] T.M. Squires and M.Z. Bazant, J. Fluid Mech., in press (2006).
[44] E. Yariv, Phys. Fluids 17, 051702 (2005).
[45] D. Saintillan, E. Darve, and E. Shaqfeh, J. Fluid Mech. 563, 223 (2006).
[46] A. de Keizer, W.P.J.T. van der Drift, and J.T.G. Overbeek, Biophys. Chem. 3,

107 (1975).
[47] S.P. Han and S.-M. Yang, J. Colloid Interf. Sci. 177, 132 (1996).
[48] M. Abramowitz and I.A. Stegun, Hanbook for Mathematical Functions with 

Formulas, Graphs, and Mathematical Tables (Dover, New York, 1964).
[49] N.J. Rivette and J.C. Baygents, Chem. Eng. Sci. 51, 5205 (1996).
[50] J. T.B., IEEE Engineering in Medicine and Biology Magazine 22, 33 (2003).
[51] J.A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
[52] L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media (Permagon 

Press, Oxford, 1960), Vol. 8.
[53] J.H. Jeans, The Mathematical Theory of Electricity and Magnetism (The 

University Press, Cambridge, 1925).
[54] H. Lamb, Hydrodynamics (Cambridge Univ. Press, Cambridge, 1932).
[55] J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Martinus 

Nijhoff Publishers, Boston, 1983).
[56] M. Doi, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 

1988).
[57] D. Stigter, J. Phys. Chem. 86, 3553 (1982).
[58] T.G.M. van de Ven, Chem. Eng. Sci. 56, 2947 (2001).
[59] T.M. Squires and M.Z. Bazant, J. Fluid Mech. (Submitted 20 July 2005).
[60] M.C. Fair and J.L. Anderson, J. Colloid Interf. Sci. 127, 388 (1989).
[61] Y.K. Chen and C.P. Yu, Aerosol Sci. Tech. 16, 255 (1992).
[62] Y.P. Kalmykov, J. Mol. Liq. 69, 117 (1996).
[63] P.S. Grassia, E.J. Hinch, and L.C. Nitsche, J. Fluid Mech. 282, 373 (1995).
[64] K. Takehara, R.J. Adrian, G.T. Etoh, and K.T. Christensen, Exp. Fluids S34 

(2000).
[65] J.G. Santiago, S.T.Wereley, C.D. Meinhart, D.J. Beebe, and R.J. Adrian, Exp. 

Fluids 25, 316 (1998).
[66] M. Raffel, C. Willert, and J. Kompenhans, Particle Image Velocimetry: A 

Practical Guide. (Springer-Verlag, Berlin, 1998).
[67] H. Yamakawa, Macromolecules 8, 339 (1975).
[68] S.L. Zeng, C.H. Chen, J.C. Mikkelsen, and J.G. Santiago, Sensor Actuat. B-

Chem. 79, 107 (2001).



In press, Physics Review E, 2006 30

[69] Physical Constants of Organic Compounds, in CRC Handbook of Chemistry and 
Physics, Internet Version 2007, (87th Edition), D.R. Lide, Editor, Taylor and 
Francis: Boca Raton, FL.


